If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-16-229=0
We add all the numbers together, and all the variables
5t^2-245=0
a = 5; b = 0; c = -245;
Δ = b2-4ac
Δ = 02-4·5·(-245)
Δ = 4900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4900}=70$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-70}{2*5}=\frac{-70}{10} =-7 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+70}{2*5}=\frac{70}{10} =7 $
| 4/3n-2n=3 | | 5x+40=54x+340 | | -13j=104 | | 13^(x^2)=33.3 | | −24x+32=−5x+6 | | −8(3x+4)=−(5x−6) | | a²+1=0 | | n3+5=7 | | Y=-9x-27 | | 5p-45=5 | | 3+x/2=-15 | | 16=1−2x+5 | | H(x)=-x-4 | | 5x-61=11+x | | 8-2(3x-6)=8 | | 8x=7x–30 | | (20t+5+15t=180) | | 49=131-s | | (x-13+155=180) | | 2y+91°+37°=180° | | 3x(3x-9)(x+3)=0 | | (3x+18+93=180) | | 7z-5/4=11 | | (3x+18+93)=18 | | y=-42-(-7) | | 2.6=(n/6.4)+4.3 | | H(x)=2-3x | | y+-16y+16y=14 | | (6x-34)+(2x+80)+(4x-10)=180 | | 802=u=74 | | 9x+15=4x-10 | | -140=-3x-17. |